S. Cova, M. Ghioni, A. Lotito, F. Zappa

Evolution and Prospect of Single-Photon Avalanche Diodes and Quenching Circuits

Politecnico di Milano, Dip. Elettronica e Informazione, Milano, Italy

Outline

- Introduction
- From Device Physics to Detector Performance
- Technology and Device Design
- Quenching Circuit : Role and Evolution
- Conclusions

The Origin

@ Shockley Laboratory in early 60's :

Avalanche Physics Investigation

- Basic insight
- Model of behavior above Breakdown
- Single-Photon pulses observed, but ...
- application limited by device and circuit features

R.Haitz et al, J.Appl.Phys. (1963-1965)

Avalanche PhotoDiode

- Bias: slightly **BELOW** breakdown
- Linear-mode: it's an AMPLIFIER
- Gain: limited < 1000

Single-Photon Avalanche Diode

- Bias: well **ABOVE** breakdown
- Geiger-mode: it's a **TRIGGER** device!!
- Gain: meaningless ... or "infinite" !!

for SPAD operation anyway

mandatory

to avoid local Breakdown, i.e.

- edge breakdown \rightarrow guard-ring feature
- microplasmas \rightarrow uniform area, no precipitates etc.

but for good SPAD performance.....

further requirements!!

Earlier Diode Structures

Haitz's planar diode

McIntyre's reach-through diode

"Thin" SPAD

"Thick" SPAD

Quantum Detection Efficiency (QE)

W.Oldham, P.Samuelson, P.Antognetti, IEEE Trans. ED (1972)

S.Cova et al

Workshop on Single Photon Detectors

Dark-Counting Rate (primary noise)

Free Carrier Generation

Generation - Recombination Centers

Field-Assisted Generation

Workshop on Single Photon Detectors

Carrier Trapping and Delayed Release \rightarrow Afterpulsing

Workshop on Single Photon Detectors

Trapping and Afterpulsing

in operation @ low temperature

 \rightarrow slower trap release

primary dark-counting rate is **reduced** but afterpulsing is **enhanced** !

S.Cova, A.Lacaita, G.Ripamonti, IEEE EDL (1991)

Workshop on Single Photon Detectors

POLIMI - Politecnico di Milano, DEI

Photon Timing

Photon Timing: Diffusion Tail

G.Ripamonti, S.Cova, Sol. State Electronics (1985)

Photon Timing: main peak width

Statistical Fluctuations in the Avalanche

- Vertical Build-up (minor contribution)
- Lateral Propagation (major contribution)

- via Multiplication-assisted diffusion A. Lacaita, M.Mastrapasqua et al, APL and El.Lett. (1990)

- via Photon-assisted propagation *P.P.Webb, R.J.McIntyre RCA Eng.(1982); A.Lacaita et al, APL (1992)*

Avalanche Lateral Propagation

Multiplication-assisted

Photon-assisted

higher excess bias voltage \rightarrow improved time-resolution

A. Spinelli, A. Lacaita, IEEE TED (1997)

Arrays and optical crosstalk

Hot-Carrier Luminescence 10^5 avalanche carriers \rightarrow 1 emitted photon

A. Lacaita et al, IEEE TED (1993)

Counteract:

- Optical isolation between pixels
- Avalanche charge minimization

F.Zappa et al, ESSDERC (1997)

Low Detector Noise

• For low dark-counting rate

→Reduce GR center concentration

→Reduce Field-assisted generation

• For low afterpulsing probability

 \rightarrow Reduce deep level concentration (minority carrier traps)

Technology issue:

for wide sensitive area very efficient gettering is required!!

Thin Si SPAD

Planar structure typical active region: 20 μm diameter 1 μm thick Thick Si SPAD

Reach-Trough structure typical active region: 200 µm diameter 30 µm thick

Workshop on Single Photon Detectors

Thin Si SPAD's

- Good QE and low noise
- Picosecond timing
- Low voltage : 15 to 40V
- Low power : cooling not necessary
- Standard Si substrate
- Planar fabrication process
- COMPATIBLE with array detector and IC's (integrated circuits)
- Robust and rugged
- Low-cost
- NO COMMERCIAL SOURCE TODAY

Thick Si SPAD's

- Very good QE and low noise
- Sub-nanosecond timing
- High voltage : 300 to 400V
- High dissipation : Peltier cooler required
- Ultra-pure high-resistivity Si substrate
- Dedicated fabrication process
- NOT COMPATIBLE with array detector and IC's
- Delicate and degradable
- Very expensive
- SINGLE COMMERCIAL SOURCE

Photon Timing: SLIK[™] reach-trough structure

Workshop on Single Photon Detectors

Photon Timing: planar epitaxial structure

A.Lacaita, M.Ghioni, S.Cova, Electron. Lett. (1989)

Workshop on Single Photon Detectors

Photon Timing: diffusion-tail-free structure

A.Lacaita, S.Cova, M.Ghioni, F. Zappa, IEEE EDL (1993)

Workshop on Single Photon Detectors

Photon Timing: diffusion-tail-free structure

A.Spinelli, M.Ghioni, S.Cova and L.M.Davis, IEEE JQE (1998)

Workshop on Single Photon Detectors

IR spectral range : Ge devices

Similar to silicon devices, but

- deep cooling mandatory
- absorption edge below 1500nm @ low temperature
- very strong trapping effects
- strong field-assisted generation effects

A.Lacaita, P.A.Francese, F.Zappa, S.Cova, Appl.Opt. (1994)

IR spectral range : InGaAs-InP devices

Workshop on Single Photon Detectors

Passive quenching is simple...

... but suffers from

- long, not well defined deadtime
- low max counting rate < 100kc/s
- photon timing spread
- et al

Active quenching....

Output Pulses

- short, well-defined deadtime
- high counting rate > 1 Mc/s
- good photon timing
- standard logic output

P.Antognetti, S.Cova, A.Longoni IEEE Ispra Nucl.El.Symp. (1975) Euratom Publ. EUR 537e S.Cova et al

POLIMI - Politecnico di Milano, DEI

AQC evolution

Earlier modules in the 80's

Workshop on Single Photon Detectors

iAQC - Integrated Active Quenching Circuit

- F.Zappa, S.Cova, M.Ghioni, US patent appl. March 5, 2001, (allowance notice Nov. 6, 2002, priority date March 9, 2000)
- F. Zappa et al, ESSCIRC 2002

iAQC - Integrated Active Quenching Circuit

Workshop on Single Photon Detectors

iAQC - Integrated Active Quenching Circuit

Practical advantages

- Miniaturization \rightarrow mini-module detectors
- Low-Power Consumption \rightarrow portable modules
- Ruggedness and Reliability

Plus improved performance

- Reduced Capacitance
- Improved Photon Timing
- Reduced Avalanche charge
- Reduced Afterpulsing
- Reduced Photoemission \rightarrow reduced crosstalk in arrays

Can Photon-Timing be improved for existing AQCs?

Can Photon-Timing be improved for existing AQCs?

S.Cova, M.Ghioni, F.Zappa, US patent No. 6,384,663 B2,

date May 7, 2002 (priority date Mar 9, 2000)

Workshop on Single Photon Detectors

Photon-Timing with PerkinElmer SLIKTM diode

with discrete-component AQC alone... ...and with additional timing circuit

Workshop on Single Photon Detectors

Conclusions and Outlook

• Silicon SPAD technology

is fairly advanced and can be further improved

• Low-cost highly efficient Si-SPADs

appear now to be feasible

• Monolithic iAQCs

make possible miniaturized (and even monolithic) detector modules

- SPAD Array detectors are a realistic prospect
- Ge, III-V and II-VI SPAD detector technologies require further progress, but may open remarkable new perspectives

Workshop on Single Photon Detectors

Photon Timing comparison

PerkinElmer SPCM (SLIK[™] diode)

Planar thin Si-SPAD

Workshop on Single Photon Detectors